Instability of spheres with deformed Riemannian metrics
نویسندگان
چکیده
منابع مشابه
ON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملSobolev Metrics on the Riemannian Manifold of All Riemannian Metrics
On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...
متن کاملOn formal Riemannian metrics
Formal Riemannian metrics are characterized by the property that all products of harmonic forms are again harmonic. They have been studied over the last ten years and there are still many interesting open conjectures related to geometric formality. The existence of a formal metric implies Sullivan’s formality of the manifold, and hence formal metrics can exist only in presence of a very restric...
متن کاملLearning Riemannian Metrics
We consider the problem of learning a Riemannian metric associated with a given differentiable manifold and a set of points. Our approach to the problem involves choosing a metric from a parametric family that is based on maximizing the inverse volume of a given dataset of points. From a statistical perspective, it is related to maximum likelihood under a model that assigns probabilities invers...
متن کاملRiemannian metrics having the same geodesics with Berwald metrics
In Theorem 1, we generalize the results of Szabó [Sz1, Sz2] for Berwald metrics that are not necessary strictly convex: we show that for every Berwald metric F there always exists a Riemannian metric affine equivalent to F . Further, we investigate geodesic equivalence of Berwald metrics. Theorem 2 gives a system of PDE that has a (nontrivial) solution if and only if the given essentially Berwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1987
ISSN: 0386-5991
DOI: 10.2996/kmj/1138037420